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Abstract. The model of a quantum damped oscillator based on the Caldirola-Kanai 
equation is investigated by exploiting its coherent state basis. It is shown how these coherent 
states facilitate the derivation of fluid-dynamical equations corresponding to this model 
in the classical limit. From the conservative form of these equations i t  is concluded that 
the system represented by the Caldirola-Kanai equation cannot be considered as the 
quantum analogue of the classical damped oscillator. This is contrasted with the case of 
a harmonic oscillator interacting with a heat bath. 

1. Introduction 

There has been increasing interest in recent years in the problem of the quantum 
mechanical treatment of dissipative systems. The reason behind this is related to the 
fact that such a problem has applications in many widely separated fields such as 
nuclear physics, quantum optics and plasma physics. There is more than one method 
of dealing with this problem. One way is to consider the classical equation of motion 
of a damped harmonic oscillator 

x + 2y0x + w:x = 0. (1) 
It is well known (Dekker 1981) that this equation can be derived from the Bateman 
Lagrangian 

z,, = imo exp(2yot)(x2 - w i x ) .  (2) 
A Hamiltonian corresponding to z0 can also be constructed in the standard way, or 

= p 2  exp(-2yot)/2mo+~mo exp(2yot)wix2 ( P  = mo exp(2yotW). (3) 
The quantisation of Ho in the conventional manner leads to the time-dependent 
Schrodinger equation 

which is also known as the Caldirola-Kanai equation (Caldirola 1941, 1983). Since 
Ho leads to the classical equation of motion (1) representing a damped system, some 
authors (Caldirola 1941, 1983, Dodonov and Man’Ko 1978, 1979) have claimed that 
(4) describes a quantum damped system. However, there is now accumulating evidence 
in favour of a conservative system interpretation of (4) (Senitzky 1960, Greenberger 
1979, Ray 1979, Cerver6 and Villarroel 1984). 

Another model of a damped quantum system which has also received much attention 
in recent years is that of a harmonic oscillator interacting with a heat bath (Glauber 
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1969, Louise11 1969). Since damping or dissipation arises as a result of neglecting 
some channels of energy leakage from the system to the outside world, it is expected 
that this model of quantum damping is more representative of the situation. This is 
well supported by the work of Ghosh et al (1977) who have invoked the coherent 
states concept to derive fluid-dynamical equations for this system in the classical limit, 
showing that these equations contain dissipative terms well known in classical fluid 
dynamics. 

In connection with the last point, it should be emphasised that the use of the 
coherent state basis to derive fluid-dynamical equations for quantum systems in the 
classical limit is now well established (Ghosh et a l  1977, Habeeb 1987). However, to 
our knowledge, no attempt has been made to clarify some of the interpretation questions 
connected with damping in the Caldirola-Kanai oscillator by using the coherent state 
and  fluid dynamics concepts in analogy with what has been done for the oscillator 
interacting with a heat bath. By doing so, we hope in the present paper to approach 
the interpretation problem from a new perspective. This would also allow us to compare 
two models of quantum damping by analysing them both in the same framework. This 
framework is the classical fluid dynamical interpretation within which concepts such 
as damping and  dissipation have well defined meanings. 

To this end we will employ the coherent state basis, already known for the 
Caldirola-Kanai oscillator from the work of Dodonov and Man’Ko (1979), to derive 
the relevant fluid-dynamical equations in the classical limit in 0 2. Then, in 0 3 we 
briefly review a similar treatment already known (Ghosh et a1 1977) for the quantum 
oscillator interacting with a heat bath for comparison purposes. Finally, 0 4 closes 
with a discussion. 

2. Fluid-dynamical interpretation of the Caldirola-Kanai equation 

The coherent states +,(x, t )  for the system described by (4) represent a special case 
of those constructed by Dodonov and Man’Ko (1979). They satisfy the equations 

4 t ) + J X ,  1) = a+,(x, 1) ( 5 )  

where a( t )  and  at( t )  are boson annihilation and  creation operators respectively, with 

d ( t )  = ( i / J2) (E( t ) f i - . i ( t )  e2Yo’i) (7) 
where E (  t )  is a complex function satisfying 

b + 2 yob + OJ; b = 0 (8) 

e x p ( 2 y o t ) ( d e * - d * ~ )  =2 i  (9) 
and b ( t )  = 2 - ” 2 ~ ( t ) .  It also immediately follows from the work of Dodonov and  
Man’Ko ( 1979) that the average values of the coordinate and momentum operators 
in these states are 

exp( 2 yot) ( a d  * + a * d ). 
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P representation, the density matrix 4 for the system (4) can be written 
1969) 

4 = d 2 a  P ( a ;  r)la)(al. (12) J 
Also, in the 
as (Glauber 

Using (7) and its Hermitian adjoint, the Hamiltonian operator corresponding to (3) 
becomes 

H =ah exp(2y,r)[f~A~+f,A+~+f,(l+2A+A)l (13) 

fl = & 2  + E2w; (14) 

f2 = & * &  + & E * @ : .  

where 

(15) 

Now, we *notice from ( 5 ) ,  (6) and (12) that the same commutation relations for A and 
A' with 9 hold as for the ordinary oscillator, or (Ghosh er al 1977, Habeeb 1987) 

A.@ = d 2 a  l a ) ( a ( a P ( a ;  t )  (16) 5 

BA'= d*ala)(aIa*P(a;  r ) .  
* *  J 

Then the Heisenberg equation of motion for 4 
a4 i _-  ---[H,@] 
a t  h 

can be translated into the P representation as 

(21) 
Considering a and a* as functions o f f  = (al2la) and p = (alp*la) we obtain from (10) 
and (11) 

L=(LJ2( E *  -+ m,i* exp(2yot) -) a 
aa dR ap 

and 

The classical limit is approached, as usual (Ghosh et a1 1977, Habeeb 1987) by letting 
h + 0. In this limit quantal correlations vanish and R and p become the classical 
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position coordinate (x)  and classical momentum ( p )  respectively. Also, P (  LY ; t )  + 

f(x, p ;  t )  giving the classical distribution function in phase space (Ghosh et a1 1977, 
Habeeb 1987). Therefore, in this limit (21) becomes 

where (14) and (15) have been used. Converting from momentum space to velocity 
space using U x = p  exp(-2yor)/mo (see (3)) ,  we obtain from (24) 

As in Ghosh et a1 (1977) and Habeeb (1987), to obtain the relevant fluid-dynamical 
equations in this classical limit we first define the mass density as 

p ( x ;  t ) =  mo f(x, U ;  t )  du J 
and the 'local hydrodynamic velocity' through 

~ u ' ~ ) ( x ;  t )  = mo f(x, U ;  t ) v  du. I 
Then, the zeroth moment of (25) over u-space gives 

which represents the equation of continuity. The first moment of (26) over u-space 
gives the momentum conservation equation 

- a ( p d h ' )  = -w;px -- a ( p u  ( h ) 2 ) .  

at  ax 

Combining (28) and (29) we obtain (cf Ghosh et a1 1977) 

which is the Euler equation of classical fluid dynamics with the term on the right-hand 
side representing the driving force of an oscillator of frequency wo on the fluid. 

3. Fluid-dynamical interpretation of an oscillator interacting with a heat bath 

This section briefly outlines the treatment of a one-dimensional version of a quantum 
damping model along the lines of Ghosh et a f  (1977). This is to facilitate the comparison 
with the results of § 2. 

In its simplest version, an oscillator interacting with a reservoir or heat bath is 
governed by the Hamiltonian (Glauber 1969, Louise11 1969) 

fi=h@a*ta*+z k h w k b ^ : b ^ k + + h ( ( h , a * ' b ^ k + + k a * ~ k )  k (31) 

where o is the oscillator frequency, a* and a*' are its annihilation and creation operators 
respectively, { q} are the frequencies of the set of oscillators representing the reservoir, 
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{ &} and { 6:} are their annihilation and creation operators respectively and { A k }  are 
coupling constants. Using the Wigner- Weisskopf approximation (Glauber 1969), 
Ghosh et a1 (1977) have obtained the equation of motion for the density operator k??' 
for this system in the interaction picture. From this equation they then proved that 

a 3 / a t  = +7[2a*&P - a as-  36'61 + y i i [ i i+& + 
yhere 9 is the reduced density operator for the oscillator (31), which is the trace of 
9 over the reservoir modes, 

(32) A t  A * - 6'63 - 366'1 

Y = 2.rrg(41A,12 (33) 

5 = l/[exp( h w / k T )  - 11 (34) 

is the occupancy of the reservoir mode with frequency o, g ( o )  is the density of modes, 
and T is the reservoir's temperature. In deriving (32) certain simplifying assumptions 
have been made and the reader is referred to Ghosh et a1 (1977) for more details. 
Next, expressing (32) in the coherent state basis,for the oscillator with frequency w, 
reverting to the Schrodinger picture and following a procedure similar to that of § 2, 
Ghosh et a1 (1977) obtained 

and 

a2 
a- S ,+y  l + f  a-+a*- a )  +E- aaaa* ]ss*  (35) ( * L -  aa* aa [ ( a :  aa 

a 
a t  
- S s ( a ,  a*; t )  = -iw a 

Defining the 'fluid density' and the 'local hydrodynamic velocity' and going to the 
classical limit as in § 2, one obtains from the zeroth u-moment 

a a 
at ax " a x  
*+- ( p u ' h ' )  = L  - ( p x )  

and from the first u-moment 

The last two equations correspond respectively to (25) and (26) of Ghosh et a1 (1977) 
in the limit h + 0. From (36) and (37) we obtain 

4. Discussion 

Examination of (30) shows that the quantum oscillator described by the Caldirola- 
Kanai equations admits in the classical limit a fluid-dynamical interpretation in terms 
of an Euler equation with no damping terms. This is in contrast to the case of an 
oscillator interacting with a heat bath whose fluid dynamics in the classical limit is 
governed by (38) in which the existence of damping terms is easily recognised. This 
supports the already existing arguments (Senitzky 1960, Ray 1979, Cerver6 and Villar- 
roe1 1984) that the Caldirola-Kanai model cannot be considered as the quantum 
analogue of the classical damped oscillator. The advantage of the present treatment 
is that two models of damping can both be compared in the same scheme. It is hoped 
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that such a treatment can be extended to other models of damping, such as the 
non-linear Schrodinger equation approach. However, such an extension is not expected 
to be straightforward because of the non-availability of the relevant coherent states. 
Also, it is of interest to apply the present idea to the wider class of harmonic oscillators 
with variable damping governed by a generalised Caldirola-Kanai equation for which 
coherent states are already available (Dodonov and Man’Ko 1979). Finally, it should 
be stated that the present work represents one example of the application of the 
coherent states of the Caldirola- Kanai oscillator which may motivate other applications 
elsewhere. 
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